Webinar: Current Coastal Change Research and Priority Information Needs in Western Alaska

C. Brown, University of Alaska Fairbanks
S. F. Trainor, ACCAP, University of Alaska, Fairbanks
C. Knapp, ACCAP, Western Colorado University
Outline

• Introduction: *Why conduct a coastal change project synthesis?*

• Methods:
 – Coastal change project definition
 – Project search
 – Synthesis of project information

• Results

• Summary
 – Utility for coordination and learning
 – Recommendations
Coastal Change Impacts:

- Saltwater intrusion
- Changes to shore-fast ice
- Coastal erosion
- Damage to infrastructure
- Impacts to drinking water supplies
- Changes to traditional subsistence use
• Reviewed the current state of the coast from a systems perspective.

• Developed framework for a conceptual model focused on social-ecological impacts of coastal erosion and inundation.

• Developed key information needs.
Need for more baseline data:

- Coastal mapping
- Wave and wind monitoring
- Tidal benchmarks
- Severe storm patterns
- Ice conditions
- Community observations
- Biogeochemical interactions
- Discover and synthesize existing information
Benefits of a coastal project synthesis:

- Track existing projects
- Incorporate project findings
- Gauge remaining research gaps
- Prioritize future project support
Short term goal:
• Create an accessible report that compiles current coastal change projects occurring in Western AK.

Long term goal:
• Foster better coordination about coastal change projects.
• Provide a tool for practitioners and researchers to learn from one another.
• Identify existing information needs.
Geographic and Temporal Scope of Coastal Projects
Coastal Projects Definition:

- Coastal drivers
- Shoreline projects
- Coastal habitat
- Nearshore projects
- Estuary projects
- Coastal wildlife projects
- Subsistence species projects
Identify Existing Projects:

- Online database search:
 - NSF
 - AOOS
 - USGS

- Internet Word Search

- Online Call for information
Identify Existing Projects:

- Contact coastal stakeholders requesting information
- “Word of Mouth”
- Confirm projects with key experts
Response Rate:

- 130 coastal stakeholders via email
- 35% response rate
- 37 individuals reviewed our drafted list of projects
<table>
<thead>
<tr>
<th>Project ID:</th>
<th>Keywords:</th>
<th>Title:</th>
<th>Principle Investigator:</th>
<th>Geographic Scope:</th>
<th>Project Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>storm patterns<sup>1</sup>,</td>
<td>High-resolution model coupling effects of sea ice, tide, wind-driven</td>
<td>Robert Grumbine (National Oceanic and Atmospheric Administration)</td>
<td>Western AK coastline</td>
<td>2012-2013</td>
</tr>
<tr>
<td></td>
<td>coastal erosion<sup>2</sup></td>
<td>wave dynamics, and currents in the formation of Storm Surges in Western Alaska</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>storm patterns, birds<sup>2</sup></td>
<td>Storm surge impacts on biological resources in the Yukon Kuskokwim Delta</td>
<td>Thomas Ravens (University of Alaska Anchorage)</td>
<td>Yukon-Kuskokwim Delta</td>
<td>2012-2014</td>
</tr>
<tr>
<td>O3</td>
<td>wave/current</td>
<td>Leveraging opportunity for wave buoy data collection</td>
<td>Molly McCammon (Alaska Ocean Observing System)</td>
<td>Western AK coastline</td>
<td>2012-2014</td>
</tr>
<tr>
<td>O4</td>
<td>biophysical</td>
<td>Russian-American Long-term Census of the Arctic (RUSALCA)</td>
<td>National Oceanic and Atmospheric Administration, Russian Academy of Sciences</td>
<td>Chukchi Sea</td>
<td>2004-2014</td>
</tr>
<tr>
<td>O5</td>
<td>biophysical<sup>1</sup>,</td>
<td>Observing turbulent fluxes in the upper Arctic Ocean</td>
<td>Jennifer MacKinnon (University of California, San Diego)</td>
<td>Nome</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>wave/current<sup>2</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Human system projects:

Biological system projects:

Oceanographic system projects:

Landscape-Geophysical projects:
Human system projects:
• Subsistence
• Local observation
• Coastal change adaptation

Oceanographic system projects:
• Currents/waves
• Biophysical processes
• Storm patterns
• Sea ice
• Tidal

Biological system projects:
• Birds
• Marine mammals
• Fish
• Vegetation
• Coastal/nearshore habitat

Landscape-Geophysical projects:
• Coastal erosion
• Shoreline mapping
• Bathymetry
• Hydrologic
<table>
<thead>
<tr>
<th>Project ID</th>
<th>Keywords:</th>
<th>Title:</th>
<th>Principle Investigator:</th>
<th>Geographic Scope:</th>
<th>Project Duration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>storm patterns1, coastal erosion2</td>
<td>High-resolution model coupling effects of sea ice, tide, wind-driven wave dynamics, and currents in the formation of Storm Surges in Western Alaska</td>
<td>Robert Grumbine (National Oceanic and Atmospheric Administration)</td>
<td>Western AK coastline</td>
<td>2012-2013</td>
</tr>
<tr>
<td>O2</td>
<td>storm patterns, birds2</td>
<td>Storm surge impacts on biological resources in the Yukon Kuskokwim Delta</td>
<td>Thomas Ravens (University of Alaska Anchorage)</td>
<td>Yukon-Kuskokwim Delta</td>
<td>2012-2014</td>
</tr>
<tr>
<td>O3</td>
<td>wave/current</td>
<td>Leveraging opportunity for wave buoy data collection</td>
<td>Molly McAmmon (Alaska Ocean Observing System)</td>
<td>Western AK coastline</td>
<td>2012-2014</td>
</tr>
<tr>
<td>O4</td>
<td>biophysical</td>
<td>Russian-American Long-term Census of the Arctic (RUSALCA)</td>
<td>National Oceanic and Atmospheric Administration, Russian Academy of Sciences</td>
<td>Chukchi Sea</td>
<td>2004-2014</td>
</tr>
<tr>
<td>O5</td>
<td>biophysical1, wave/current2</td>
<td>Observing turbulent fluxes in the upper Arctic Ocean</td>
<td>Jennifer MacKinnon (University of California, San Diego)</td>
<td>Nome</td>
<td>2015</td>
</tr>
</tbody>
</table>
Mapbox Website:

- Spatial points represent the locations of each project.
- Unique colors were used to identify topic areas.
- To differentiate large-scale projects that represent broad geographic regions, we used larger shaped markers.
Identifying information needs:

1) Ocean to shore:
 • coastal mapping
 • wave and wind monitoring
 • tidal benchmarks
 • storm surge patterns
 • ice conditions
 • community observations

2) Nearshore:
 • eelgrass communities
 • evaluate existing models of nearshore processes

3) Bathymetry

http://www.aoos.org/workshops-and-reports/
86 Total Coastal Change Projects

- Human Systems Projects N=22
- Biological System Projects N=33
- Landscape and Geophysical System Projects N=17
- Oceanographic System Projects N=14
Biological system projects:

- Birds n=13
- Marine mammals n=9
- Fish n=7
- Vegetation n=4
- Coastal/nearshore habitat n=5
Human system projects:

- Subsistence n=12
- Local observation n=8
- Coastal change adaptation n=8
Landscape-Geophysical system projects:

- Coastal erosion n=8
- Shoreline mapping n=8
- Bathymetry n=2
- Hydrologic n=3
Oceanographic system projects:

- Currents/waves n=8
- Biophysical processes n=4
- Storm patterns n=6
- Sea ice n=5
- Tidal n=2
Spatial Distribution of Projects in Western AK:

- 210 project sites.
- Northern coastline housed the majority of project sites (n=99).
- Almost twice as many as the central (n=61) and southern coastline (n=50).
Recommended needs:

- ~33% of current projects met a recommended need.
- Most key recommendations fell under oceanographic or landscape/geophysical projects.
- Workshop participants accurately identified key needs.

http://alaskafisheries.noaa.gov/shorezone/
• Key recommendations were underrepresented in the final database.
 o Bathymetry
 o Tidal benchmarks

• Key recommendations that are currently funded and collecting information.
 o Utilize community observations for storm surge modeling
Utility for Coordination and Learning:

• Resources that allow stakeholders to better understand and coordinate around current research efforts.

• Learning between projects and communities.
 o research outcomes
 o methods that have worked

• Identified similar projects as well as projects that could be complementary to one another.
Future Recommendations:

Please add your information!!!

http://goo.gl/forms/UZ1lcFkHbG
Recommendations:

• Develop project objectives with the regional stakeholders.

• Diversify outreach for collecting project information.

• Strategize the temporal scope of the project.

• Track the utility of these resources in the future.
Visit our website!!!!

- Project Database
- Final Report
- Link to our mapbox site
- Online project form

https://accap.uaf.edu/W_AK_LCC_Coastal_Change_Research
Questions:
clbrown12@alaska.edu