Research update on physiological response of crab to OA

Robert Foy, W. Christopher Long, Katherine Swiney, Andre Punt, Michael Dalton, Shannon Meseck

2016 Alaska OA Network
King and Tanner crab lab research

Framework for assessment of climate change and OA: Organismal (individual tolerance), population, and ecosystem level response

Experiments: (2010-2016)

- Red king crab (*Paralithodes camtschaticus*) adult females
 - Red king crab embryos and larvae
 - Red king crab juveniles
- Southern Tanner crab (*Chionoecetes bairdi*) juveniles
- Golden king crab (*Lithodes aequispinus*) adults
- Snow crab (*Chionoecetes opilio*) adults

Response variables: Survival, fecundity, morphometrics (image analysis), growth (width and wet mass), calcification

Collaborations: Hemocyte function, genetics (protein expression), mechanics, population dynamics, bioeconomics
Chionoecetes bairdi multi-year lab experiment

Tanner crab

Experiments
- Morphology
 - Starvation-survival
 - C and N content
 - Ca and Mg content
 - Mass

Embryogenesis

Larvae
- Morphology
- Starvation-survival
- C and N content
- Ca and Mg content
- Mass

Oogenesis & Embryogenesis

Direct effects on
- Larvae
- None

Carryover effects from
- Embryogenesis
- None

2011
- Females wild-caught
 - None (wild brooded)

2012
- Females in treatments 1-year
 - Ambient
 - pH 7.8
 - pH 7.5

2013
- Females in treatments 2-years
 - Ambient
 - pH 7.8
 - pH 7.5

Ocean Acidification: is it the carbonate or the pH?

- pH and temperature measured daily (n=316 in year 1; n=412 in year 2)
- DIC, salinity, alkalinity measured weekly
- HCO₃⁻ and CO₃⁻ and omega calculated

<table>
<thead>
<tr>
<th>Treatment</th>
<th>pH</th>
<th>pCO₂ atm (μatm)</th>
<th>HCO₃⁻ mmol/kg</th>
<th>CO₃⁻² mmol/kg</th>
<th>ALK mmol/kg</th>
<th>ΩAr</th>
<th>ΩCa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient</td>
<td>8.09 (0.07)</td>
<td>391.90 (65.59)</td>
<td>1.90 (0.04)</td>
<td>0.09 (0.02)</td>
<td>2.01 (0.04)</td>
<td>1.44 (0.25)</td>
<td>2.31 (0.40)</td>
</tr>
<tr>
<td>pH 7.8</td>
<td>7.80 (0.03)</td>
<td>781.17 (31.13)</td>
<td>1.99 (0.04)</td>
<td>0.05 (0.00)</td>
<td>2.08 (0.04)</td>
<td>2.13 (0.06)</td>
<td>0.78 (0.05)</td>
</tr>
<tr>
<td>pH 7.5</td>
<td>7.50 (0.03)</td>
<td>1597.15 (62.76)</td>
<td>2.05 (0.04)</td>
<td>0.03 (0.00)</td>
<td>2.16 (0.04)</td>
<td>2.13 (0.04)</td>
<td>0.40 (0.02)</td>
</tr>
</tbody>
</table>

Do Tanner crab respond to lower pH or lower saturation state?
- relatively shallow & more variable environment
- can Tanner crab regulate pH?

Ca²⁺ + HCO₃⁻ ⇌ H⁺ + CaCO₃

Some corals, coccolithophores, and crustaceans can transport bicarbonate (organic carbonate) to site of mineralization

Future Research on hemolymph chemistry
Embryo response

- pH 7.5: 10% larger yolks and 6% smaller embryos (slower development)

Embryo → larvae carryover

- Year 1: no significant difference in # hatched
- Year 2: 48-83% fewer larvae hatched
- Year 2: 71% fewer viable larvae hatched at pH 7.5

Larval survival: starvation experiments

- Embryo treatment affected larval morphometrics
- However, minimal effect on survival
- In year 2
 - Larvae 10% smaller in pH 7.5
 - Larvae that survived lived longer in year 2 (acclimation?)
 - Decreased metabolism OR higher energy reserves
- Adaptation due to variable environment?
Juvenile crab mortality and growth

Juvenile stage is very susceptible to negative OA effects.

Adult condition and calcification

Energetic trade-off between condition and calcification?
Adult hemocytes (semi- and granular cells)

- Flow cytometer
- Total hemocyte count did not change
- More dead cells & phagocytosis increased at pH 7.5
 - Cells dying faster (turnover) than can be removed

- Internal pH no different among treatments
- Energetic costs to maintain pH and maintain defense mechanisms

Meseck et al. 2016
Fisheries population effects

Experimental results were used to inform pre-recruitment model
-Tanner crab oocyte, embryo, larval, and juvenile survival

Population dynamics model

Laboratory data

Bioeconomic model
Population Effects: without acclimation

- Proportion larvae hatching that survive to juvenile stage C8 could decline by 25% over 100 y.
- >50% decrease in catch and profits within 20 years
- Only significant when oocyte development is included in survival estimates
Evidence for phenotypic plasticity?

Effects at oocyte and embryo stage significant

Effects at larval stage minimal (no effect on mortality)
 • Decreased metabolism?
 • Larvae that survived may be acclimating?
 • Adaptation due to variable environmental conditions?

Effects at juvenile stage significant
 • Calcification vs condition tradeoff?

Adult crab maintain hemolymph pH
 • Energy spent maintaining cell pH and immunological function...effects development during oogenesis

Sustainability of commercial fisheries uncertain....but there is hope.
• Alaska Fisheries Science Center Kodiak Laboratory Research Staff
• NOAA Ocean Acidification Program
• North Pacific Research Board

http://www.afsc.noaa.gov/RACE/shellfish/oceanAcid/oceanAcidCurrent_HOME.php

Thank you!
Kodiak Lab approach to climate effects on commercial crab stocks

Climate Change
1. Range expansion
2. Change life history
 - Growth
 - Reproductive timing
 - Habitat availability
 - Species interactions
 - Larval drift

Ocean Acidification
1. Increased Mortality…
2. Growth change
3. Calcification
4. Behavioral changes

Framework to assess environmental effects

modified Koenigstein et al. 2016